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In the preeent thi:d part of an investigation dealing
with the inwaerd bulge type buckling of monosoque cylinders
the theory of bBuckllng Ih pure bending is Tefined thrdugh
the consideration of the shear strain energy #fored in the /
sheet coverlng, the aeeuﬁption "6F T - revised deflected shape
of the rings e% bueckling, and the use ‘of summatlions in place
of some of the integrations of tlie PPeseding raports.  The
caloulation of the shear strain energy is based oh &n ésti-
mated variation of the shear rigidity. of the buckled panels
of sheet with increasing compressive stress, which mekes 1t
possible to dispense.with the empiricism involved in the
procedure of the preceding papers -according to whieh the
value o0f the parameter n had to be determined from data
obtalned in gemeral instebllity. tests. The: revised theory
is applied to all the sheet—-covered specimens tosted in pure
bending in the Guggenheim Aeronantics Leboratory &f the
Celifornle Institute of: Technology and at the Polytechnle
Ingtitute of Brooklyn. The agreement between theory and ex-
Reriment is found to be good. - R : z o
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INTRODUCTION ~ - , S —

In the preeent pert III of a eeriee Of inveetigatione' CT
dealing wlth the 1lnward dbulge .type buokling of monoc0que -
.0ylinders an attempt is made to develop further €he theory -
of general instability in pure bending. The dbasic. ideas of
the theory were first publiahed ‘in- 1938 in reference 1, The
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j monocoque was assumed %to oousist of e circular sheet metal
eylinder reinforced with evenly spaced rings and stringers,
one of the stringers being located at the bottom (and most
highly compressed) fiber of the cylinder. The buckling load
was calouleted with the ald of the Rayleigh-~Ritz~Timoshenko
method, 1In the axlal direction the shape of the inward
bulge that develops at Bueckling was assumed to be sinusoldal.
In a transverse section the distortions were assumed to fol-
low the general pattern shown in figure la, The dotted line
in figure 1lb presents more accurately, and on an enlarged
scale, the deflections of a ring according to the formula
suggested in reference l, This formule satisfles the re--
quirements of inextensional deformations: and of symmetry and
represents g distorted shape in whigh the deflection vanishos
and the tangent %o the deflected shape is perpendicular to
the radius of the oircular cylinder when ¢ = Qq.

. In the pgloulationa the shear strain energy stored 1n
the. aheet covering was neglected. The buckling logd Por*

defined as ‘the® force. aoting upon - the most. highly oompreass&
stringer .at .the bime when the -monocaqque buckles, was obtalned
as a .functloh .of two parameters, One of these was denoted

n -and defined .as ﬂﬁ¢o. It characterizes: the length of the

perimeter Involved ‘in buckling as showd in’ figure la, = The -
other was ‘the number m - of rings “involved in the inward
bulgeé. The bucklin& 10ad was minimized by differentiating
i1t with regpect 'to and aetttng the differential coeffi-
cient equal to zero. Thig equation. together with the orig-
inal expresslon fOr the bua&ling 1oad, ‘permitted the -drawing
of a family of curyas representing the equivalent length ’
fagtor X, defined by the’ equation

Iy
2 .

3 — a_. . - . K
Pcr-ﬁ nPEI A 5, . (1)

ag a function of the buckling index A,  ‘défined as

A= (2*/13%a)(RI) 4./ (BI), (2)

-

The parameter of the family of curves was tho number m of
rings involved in the inward dPulgo, .From the diagram the
minimum ecritical load of any circular monocoque oylinder and
the corresponding value of m ocould be éasily determined by
selecting the maximun value of A - that is, the value on
the envslope of the family of ourves = ocorresponding to the
buckling index A of the monocoque oylinder.
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Unfortunately a comparison of the theory of reference 1
with the results of the teste carried out in the Guggenheinm
Aeronautice Laboratory of the California Institute of Tech-
nology (see reference 2) showed that the theoretical buckling
load amounted only to 11 to 83 percent of the buckling load -
found in experiment., The.reesons for_this discrepancy were
discussed in Feference 3, Simple- calcoculations showed fthat
if the equations for the deflected shape of the rings were
assumed to0 be valid for the .sheet covering also, the ehdar
straln energy stored in. the aheet greatly exceeded the strain
energy stored In stringers . and’ ringas. On the other hand, in
all the experiments performed hitherto the panels of sheet
were in a buckled mstate 1In the vicinity of the moet highly
gompressed stringer when general instability occurred. Ob-
viously buckling of a ourved panel of sheet reduces its re-
slstance to shearing deformations, perticularly if the radius
of the oylinder is small and the stringer spaaing large. .
Oonsequently, a calculation of the shear strain energy ocan-
not ecorrespond to reality if based upon an unchanged value
of the shear modulus & and e deflected shape of the sheet

represented by the formula suggested for the d fieoted shape
of the rings, - -

—

Horeover, the ahearing rigidity of the panele varies S
around the cirocumference, those glose o the most highly
compressed stringer offering little, those near the neutril_
axis of the cylinder a great doal of resisgtancoe %o shearing
deformations, Oonsequently even in cages ‘whén at buckling
the shear sitrain energy etored in the sheet 1s small as com-
pered to the strain energy stored in gtringers and rings,
the sheet has & declsive effect dWpon the length of the per-
imeter involved in buckling, and thue greatly “infidendes the
buckling load of genersal instability. Becauese 6f the great
shearing rigidity of the non~buckled penels 1% is clear that
the inward bulge i{s not likely to extend to the ‘tenslon side
of the donocoque oylinder, but it is not ‘easy to ' celoulate _
the exact circumferentilel 1ength of the tulge, or the exeact
value of n which is tantemdurdt to it. The effect of the
sheet upon n was not considered 4in the theory of réferende
1, and this omission resulted in ad overestimate of the cir~
cunferential length of the bulge and a consequent under-
eptimate of the buckling losd, ~ e A

In referenée 3 a .revised theory wes develdped, baded on
the fundamentel assumption that the buckling loald can be cal-
.culated accurately enough for practlical .purposes from the
strain energy balance in stringers and rings without con-
8ldering the shear strein energy: stored 1n the .sheet covering,

xt
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provided the value of the parameter n 1is known from genaral
instabllity tests. This theory yielded the following formula
for the buckling loed:

o = 0t [ f/mii“m)” @

The values of the aymools in this formula repreaenting gao-
metric and mechanical properties of the momnocoque eylinder.
pertaining to each fest specimen of the GALOIT tést series
of reference 2, and the critical load observed in exporiment
were substituted into equation (3) and the equation was
solved -for n, The values obtained ranged firom 3,12 o B, 59
The variation was attrivuted. to the effect of the paramneters
dfr and’ (t/rdey,. . characterising the ehearing rigidity of

the panels, and the values of = were plotted against them
in figute 10 of reference 3, The faired~in ocurves of this "
figure show an average deviation. from the experimental points
amounting to 4.4 percent., It was sug ¢sted that this figure
be used in conjunction with equation (3) for the’ prediction
of the buckling_load of monocoque cylinders, , .

In the present report the development of .the theory 19
carried one step further,. Thé main imprdvement ie the con-~
slderation of the .shear -strain energy stored in the sheet
covering .permittizng tho elimination ‘of the emgirioiem in- .
volved in the determination of the value of from tho re-
sults of -general instability testas, -The calculation of the
shear strain energy was made poselble by the agsumnption of -
an expression connecting the effective shear modulus .Gf .
of a panel with the normal.stress prevailing in the etringors
ad jacent to the panel. This effective shealr. modulug multi- - -
plied by one~half the square of ths average ‘shear strain in
the panel. as caloulated from the’ displacements of. the four.
corners of the paneli was. taken t0 represent the shear strain-
energy storeﬂ in' the pansl. 4 gscond imprbvemont was the
choiee of a new egquation for the distorted shape of the ringe:
(Sée £ig,  1b,) It-satisfies the_ additidnal feéquirement thaf.
‘the "fadius of curvature of the deflectsd ring ‘be equal.to -
the original radius of the cylinder when ¢ = ¢o

,

In the .developrent ‘of the thaary &Qma of the original
integrations were repréced Vy summations. Coneideration was
given ta the poaaibility of dqviations cf the normal etress
diptribubtion  -from the ‘commonly agsumed linear law, The.re-
sulte of tho- theoretiocal calculations are prosented in the
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form of tables the use of which permits the evaluation of the
minimum vritical load for monocoque oylinders having the
same number of stringers as the test specimens of the GALCIT
and the P,I.B, series. Tables also could be set up easily
for cylinders having any other number of stringers, It 1s.
considered advisable, however, %¢.68elay tho presentation of
such additional tables until the time when more 1s kiown
about the varliation of the effective shear rigidity of the
Penels and the actual shepe of deflections at the moment
when buckling begins, and when more data are avallable %o
substantiate the conclusions of the present theory of the
inward hulge type gengral 1nstability.

The present theory was applied to the pure bending test
specimens of the GALCI® series and to those of the P.I.B.
tests describved in reference.,4.  Good agreemenit waps found
between theory and experiment. ' '

This investigation, conducted at the Polytechnic Insti-
tute of Brooklyn, was sponsored by and conducted with the
financlial assistance of the National Advisory Committee for
Aeronauticse.

SYMBOPS

ao{al' p;rameters charaocterizing effective shear Trig-
14dity of a panel

A : .ecrogs~gectional sarea af a stringer

bosba paremeters 1nvolved in descridbing variatiOn of
direct strain C S - .

Cp T kth coefficlent of a Fourler series

d : atringer:epacing_mqaanre@ q;pqg:cirbumféafqu_

B, You;g'a méiuiﬁa for mgtpﬁig} of & ring

Bgir Young's modulug for material of a stringer

f(m+1) function of number of ring fieldg involved in
fallure

fr(n) fundtion of pérametér n arising in confied-

tion with ring strain energy
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fa-sh(svn)

Fsh(g.q} = -

fatr pls.n)
fotr t(ﬂtn)
Tgtr(a,n). =
Pyle,n)

G
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functions of parameters & and A appearing
in shear strain energy term o

aéfl oh (8,0) = a,f; Bh(?.ﬂ)-

funetions of.paraﬁeteps 8 and n appeariné
in stringer atrain energy term

Igtr » fotr »(oyn) +-Iatrff fatr t(ﬂsg)

funetion of parameters .8 and n appearing

in work term

ordinary shear nodulusg of a p;nei

'éffactive shear'modﬁlua of a panel _

" dlstence "of centroid of a. stringer from aheet

covering of ocylinder
index used in summations or products

moment of inertils of ring oroasg section and
its effective width of sheot for bending in

radial direcﬁidn_ o . - _.

noment of inertia of ring croass sectlion without
its éffective width “of sheet for bending in
radial direction . . - -

moment of 1nertia af stringer cross sectlon
without i1ts effective aheet for bending An
radial direcetion: """ - :

momeAt oFf ittertisn of stringer cross section and
its effective width for bending in radial
direction - . :

moment -of inertia of afringer croga saction and
its effective width for bending in tangan-
tial direction .
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Istr t o

moment of inertia of stringer cross section without
its effective width for bending in tangential
direction

index uged in summations or products

integer constants

*

total length of wave in axiel direction

distance between addacent rings measured axia ly
. along cylinder L _ R T

numnber of ring fialda included in length L

function of (m+l) assoclated with ehear strain
energy term . - -

8 varameter: charaoterizing shape of ring deflection
which 18 equal to ratio of total circumference
0 that involved in buckling, or =n = w/g,

a parameter which affects the direct strain 3r
shear rigidlty distributions

load carried by most highly compressed stringer
and 1i%s effective width of sgheet at buckling

load carrled by any stringer and 1its effective
width of sheet at duckling _ -

radlius of circsular cylinder

polar coordinate ' ' -
number of stringer fields inciﬁdeq in bdiée
totai number of stringers in structure
thickness of shest covering

lnteger constant . | — o " - - .
strain energy

strain energy stored 1in rings
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Uah gtrain energy stored in sheet oovéring

Ustr etraln energy stored 1in stringers

Vg = (4/3)ur®, volums of a sphere of radius r

2vwq ordinary effective width assocliated with most highly

“ compressed stringer

2w! * modified effoctive width associated with a stringer.

o2w! average modified effective width of all stringors

W radial displacement of a point on a ring or a stringer

wi ' tangential displaecement of a point on a ring or a
stringer : S : )

] virtual work done by external load

x coordinate measuring distance along axis of oylinder

¥y ¢ deflectiom uf a straight bean due %0 berding

l6a maximum defleotion of most highly compresesed stringer
or most highly deflected ring

168 maximum defleotlon of any ring

b average Angle of twist of g panel

8 shift of neuvtral axils mcoasured from horigontal geo-

metric axis in terms of radius

AL change in distance between x = 0 and x2 = L due
to distortions

strain in most highly compressed stringer at failure

€max

A equivalent length factor
buekling index

radius of curvature at any polant of a ring

€ © >

angular measure
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P, °° - angle defining end of cirqumferential wave

awy ' vhange in directlion of tangent

DEVELOPMENT OF THN REVISED THEORY - -

Revised Deflection Pattern of the Rings

The following seven requirementa for the distorted
shape of tho rings were stated in reference’ 1, though in a
slightly different form.__ _
(1) Distortisns must be inextensional. This require-

ment ocen be formulatod as | T - -

Wy = = dwg/de (4a)

wvhere w, 'and wy are the radial and the tan~’

gential displacements, respectively, of points
lying on rings .or stringers. The proof of fhis
ntatenent 1s now given wlith the aid of Figurs 2.
The rart of the elonaation of the arc elemeht

= rdp “that’ iF que to a radial Elsplacemont
of $he element N -

[wp + (1/2)(dwr/d¢)d¢3dm

The par$ that is caused by the tangential dig~
placements is - .

Wt + (d.w.b/d.cp)d.cp - Wt

.Tha requirement that the length of tho arc ele-
ment remain uhchanged can, therefore, be ex-~
" Pressod as T : - -

Wr o + (dwt/dm)dw = 0 (a)
'if & term containing the square of Gy 1is
omitted as & second order small quantity. ZFrom
this- expression equation (4a) follows immediately,
The fact that curved bars usually distort ifnex~
toneionally was- firet noted by Lord Rayloigh.

(2) The meximum radial displacement should oceur at the
location of the most highly compreseed stringeri

dw,fdp = O when ¢ = 0 (4b)
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(3) The tangentisl displacement must vanish at the lo-
cation of the most highly compressed astringer:

wg = O when @ =0 (4c)

(4) The redial dilsplacement’ muet vanish when @ = gt
Cwp = 0 when © = Qg (4d)
(5) The tangential displacement must vanish when -
@ = Q5! _ .
Wt = 0 when P = (po (4'9)
(6) The tangent to the deflection- curve:muet be psrpen-—
dicular t0 the radius vf the nondlstorted cylin-

dor at the end of .the bulge. This requiremont
may be expressed as

:dwr/d¢_=—0 . when. © = Qg . {ar)

The proof of this atatoment is now given with
.the aid of. figuro 2, The change 1im the dlireoc-~
tion of the infinitesinal arc element is meas-
ured by duw, It follows from the ‘flgure that

tan(dy), = - [(dwp/dlp)dl/ [r + vy + (dwy/do) Jdp

In the limit the tangbnt cmn- be replaced by the
angle, Because of equation (a) the denominator
reduces to r, Conssquently

“dy = (1/r)(dwy/do) (v)

(?) The radius of curvature of the deflected shaps at

the end of the bulge must be equal to the origi=
nal radius of the e¢ylinder,

Since the expression for the curvature (1/p) is
in polar ocoordinates - -

(1/p) = [REJ-D(dR/dw)a-R(daﬁ/dwa)]/CRa+-f&ﬂ]dw)alqg

and since the radial distance R of any point of
the distorted median line of the ripg from the
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origin ies the sum.of the original radiue r and
the radlal displacement wWr, the curvature &éan ' -
be written as : : T

(1/p) = (1/r®)[r ~ wp - (aPw,/ap®)] (e)

after substlitutions are made and powers and prod=-
ucts of w, and its derivatives are omitted as

second order small quantities, The requirenent
for an unchanged curvature ls R

T -wy = (@ wp/dp®) = O . _

"This reauirement is equivalent to the following
conditiodn, 1f requirement (44) is fulfilled:

a wr/d¢ = 0 when m =, (43)

The expression assumed for Wy in the preceding reports
satiefied ell bdut the last requiremen®t,’ Nonfulfillment oF -~ - S
equation (4g) 1s believed to:haye had 1ittle &Fffect upon the
buckling loads, In the present talculations a new exprsrrion
for the deflected shape is used which satisfies all the sevén
conditions, It is found that the shear dtrain energy oorre-
eponding to the new expression 'is materielly #maller than
that correspaonding to the originsal expression. Thé new ex=
pression is as followa? S NN

wy = - B [2 coa(np/2) + 9 cos(Bnp/3) + 6 cos(5n¢]2)j (6)

when : ) B

“(n/n) £ < (n/a)

and i R —
; Wp = 0 ) : (58.)
when . s s
o] > (m/n) o
In equption (5) o
B = (a/2)[1 =~ Pos(2ni/;)] o (6v)

where a is an indetermineate coefficient proportional to

the maximum deflection of the cylinder., It may be seen that
B represents the same function 1t represented in reference
1. Oonsequently the shape of the inward bulge is unehanged

ET, _ -
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in axial sections of the monocoque cylinder, Because of the
requirement given in. équation (4e) the tangential displace-
ment w; ocan be written as

wy = (B/n)[4 ein(np/3) * 6-sin(zn¢/2) + 2 sin(bnp/2)] (6)

.Wwhen
~(n/n) < P < (w/n)
and
Wy = O (6a)
when

o] > (n/n)

It is ®apy to0 prove that equations (5) and (6) satisfy
all the conditions presented in equations (4), The old and
the new deflected shapes of the rings are compared in figure
1b for the ocase when n = 3,

Obviously the choice of equation (5) is arbitrary.

Other differsnt equations ¢an ba found which satisfy the
seven requirements, It is shown in appvendix I how expres-
slons csn be determined which, while fulfilling the cohdi-
tions: set forth in equaftions (4), eatisfy additional require~
ments and correspond tofurther redunced values of the shear
strain energy. ' These sxpressions represent deflestiaoh nurven
that hug the original circular shape more closely in the
neighborhodd of @ = ®o, as may bs esen from the curves

given in filgure 83,

Strain Energy Stored in the Hings

The straln energy estored in a ring can be calculated
from the equation . :

U =pr(1/2)(EI)r[(l/p) - (1/r)]8r ao (-

where .

(BI), Dbending rigildity of ring for hending in the plane of
ring .

r original radiuns of cylinder

p radius of curvature at any point after distortions
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The moment of 1nertia 0of the ring is calculate& for the ring
section proper augmented with ite effective sheet, The width
of the effective sheet is. taken equal to the width of the
ring in agreemehﬁ ‘with the procedurs advoéated 1in references
1, 3, and 6. With the aid of equation _(c) the strain snergy
stored in all the rings 3an be written in the form.

-3

+'n‘/n- | _ B ———

Uy = E: (1/2)(3:)ru/n (1/x*)[wy + (bawr/bma;iér dp -(E)

-1rfn

where the summation must include all the rings involved in 1
wave lengths Upon substitution of the value of Wy, as glven

in equation ¢5), and with the ald of the ftransformation * = ~
x = 3L/ (m+1) C T

valid at the 1ocg§;on of any ring, integration gives _

R - r
- . . T —_

= (ma/4)nf (n)[(nl)r/zraj }: {} - GOBEZHJ/(m+l)]}

where T T o R _-'-'::':T: -= ;:Ei?l
L, -rr/n _ -- - - L
: o S . 2 3.8 - - R
£ (d) =-(1/ﬂ)J/n [w, + (3 w,./39 )] do (Qa)
Lo/a -

In zeneral, if wy, s givén'ﬁy thé e:préssioh

Vo = -8 y , ©¢jocos kincp . _(aki a posltive integer) (._L)
i 1’2‘—’_:'5, LI ) o ' - - —_ - -

then.equation (9a) becomes ) - - T

£.(n) = (1/n) Z 638 [(ksn)® ~1J L (B)
' 1—1,3,3,... ' S
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With the valuea of the coefficienis <©¢ given in eauation
(6) equatton (B) eimplifiee to . L

£,.(n) =[1386.876 n® ~ 679 # + (110/n)] (10)

The summetion indicated in equation (9) was evaluated
in the appendix of reference 3. It was found to be equal to

(3/2) (n+1) when (m+l) > 2 (11a)
1 , " when (m+l) = 2 (11v)

Thue the totsl straln energr stored in all the rings within
one inward bulge can be written In the followlng form:i

Up=a®(3/16) [(u+1)/r3](n/n)[1386.875 n*-679 r°+120](EI),.  (12)

when {m+1) > 2

By replacing (3/2)(m+l) by ﬁnity in the right-hand nmemhsr of
tha equntion, tho expression for tlLe straln energr valld
when %m+l) = 2 1g obtained,

It is seon that the total strain energy etored in the
rings is proportional to the:number of ring fields (m+l) in-~
volved in ome bdulgoe, Moreovor, tho strain energy inoroases
very rapldly with inerseasing n,; approximatoly as the cubo
of n =~ that ¥s, 1t takes very aunch strain energy to dilstort
the rings into bulgss of small olrcumferential length. For
aumerical calculations it is convenient to rewrite equatlion
(12) in the form

U, = a?(8/16)[(n+1) /3 In(B1) 2, (n) when (m+l) >'2 (13)
Up = «f[1/(8r3) Jn(BI) £, (n) when (m+l) = 2 (13a)

where f, (n) 1s the function defined im equatLon (10) Val-
unes of this funotion are tabulated in table 1,

Strain Bnergy Stored in the Stringers

In accordance with.the assumptions made rcgarding deflac-
tions, all tho stringers band both radiallv and tangentially
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(except the most highly compreseed stringer which bends,only
radially). The strain energy ocan be taleulatsd from equation '
(7). It 1s shown in.Btrength of, Haterials thet for an orig—

inally atraight beam T . N : - Eeo - .-

(1/p) = (llr) = & y/dx .. N (d?

if vy designates the diaplaoement perpendioular ﬁo the

‘x~direction (x being memsured parallsl to the axis:'of thé"

beam). As wp and wt denote two perpendioular GOMbonéﬁﬁs

of the diaplacements of the atringer, they have to be uneged f
in ‘the place of 'y. .Thus the total_etrain energy. stored in
the stringers can. be writtén in. the form : S

S —

Z (1/.2):%tr f e’ wt/ax ) :m g+ (3 wr/ax )" fape x5 (1)

_._._4-_.-_.,
-

where the summation must include all tha stringers. R ié :
sssumed that. Iyyp.4. and I 4. o :ere,. prlncipal noments’ oFf

inertia.,. After substitution of the expréagions: given in T
equations (5) and (6) into equation (14) integration gIvcs

stf"(“'" /1.3)3Btr zz {EE cos(np/2)4-9 cos(3np/2)+-5 coa(5np/2)] Tetr o

= t-_l-qrﬁnbin--l- .

e ) sin(n:p/E) + 6 ain(smp/a) +2 sin(Snnplz)] L - t} (15)

The summation has %o be ertended around the part of the per-
imeter involved in buckling. In this region Istr r and

Istr t vary since the effective width of. sheet added to the
crosse section of the wtringer proper varies, because _of the
changes in the value of the normal strese. ‘The analvtical
expressions for the moments of inertia are very cumbersome
partloularly since the effect of the curvature o6f theo shoot
covering must also be. taken into account,  Moreover, the so-
called reduced eﬂfactive width rathér than the ordinary ef-
fective widtb must be used for-tho. ‘ealoulaticn’ of The momenta
of inertla, as was :shown in referonce 1,- Asauminp harguarra B
cube~=rocot formula ﬁo be .velid for thHe. effective width 2w of
the equivalent flat sheet, the reduced effective width | 3w!

(3/3)3w in the region where the deflections are in the Ta-
ward direction. In the region-wlere the cylinder bulges

LR TR
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fout" (see fig. la), the "reduced! . effective width is 4/3
of the ordinary effective width .and should be denoted prop-
érly as"modified" cffective width, - This term obviously may
refer to both the deoreased and increased valucs, )

The complexity of the problem.can be reduced nmaterlially
through the assumption of average moments of inertia Iggy

and Igpp g corresponding to the average value of the modi-

fied effeotive width, - The rule according to which thils av-
erage must be choson cannot be determined, howevor, without
carrying owt the’ summations of oquation (15) with all matho-
matical rigor, On the other hand, the cr}tioal gtrain in 1= |
ward bulge trpe buckling is not too sensitive to changes 1in '
the rule used for dotermining the average value of the modi-
fied offoctive width, as may bec soen from tho numorical work
of tho following chapter, and ovon lces 80 t0 changes in tho
cholce of the value of the effective width of the most highly
compressed stringer, as was shown in refersence 5, Moreover,

it should be remembered that the conception of the effeotive
width itself is approximate and in partiocular the applica-
tion of the conception to ocurved panels 1ls lacking in ana-~
lytical foundation. Oonseguently great rigor 1s not called
for in the calculation of the effective widthe. .

.- Jor these reasons the theory of this report has been
developed on the aessumption of a constant average value for
the moment of inertia, In all the numerical work to follow
the average momonts of inertia wore calculatod in corracspond-
ence with the ostimate that the value of the -averago modifiod
offoctive width lileos botwoon thc values of the ordinary and
tho roducod offceotive widthe at tho location of tho most
highly comprossod stringor, Tho principlos govorning. tho
choice 0f the value within these limite are discussed.in con=-
nection with detalls of the numericsal work, '

"

The assumption of constant moments of inertia permits a
rigorous caloulation of the summation indicated in equation
(16). The work involved can be elightly simplified through
the introduction of the symboles 8 ~Ffor the total number of
stringers (or stringer fields) in the monocoque oylinder, and
8B for the total number of stringer flelds affected by-the
gi:;;;tions.d th? this notation the angular spacing of the

spaced stringers 1is 11 : ' '
evealy spaced str i 2n/8§ radians, :Moreover, from

g = S/n ' . N . tlﬁ)
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With the new notation equation (18) - can be rewritten in

the fornm . B : .

. .
Ustr(I‘?/maTr )(l/Estr> = Fstr(?'n) = str rfstr r(s n)

7

. . - .ls/a)-1
+ Istr,tf?tr.t(s,n) = 266 Igpp p ¥ 2 [2 cos(mi/s)

1=1

+ 9 cos(3mi/s) + 5 cos(5mi/8)1 Tggr o

o (8/2)=1 o o T
+ (2/2%) }: e sin(ni/s) * e sin(sni/s)

i=1 : . T LTI

+.2 31n(5ni/S)] Istr - | ';' J;“ , 1 -“‘.::i.' Tlv)

The term 2566 I Str T reprosents the stﬁain energy stored in

the mogt highly compressed strlngef The .other terms rep-
resent the straln energy stored in all the other stringers.

These summatlons are c§rried out in appendix II. They give
fstr(s,n) =*55 i-fsfr'r‘+:28(s/ng)lgtf_t when & > 4 _m(lsa)

Foip(s,n) = 400 I r +'(s4/n2)xs?r , wnen s =4 (18%)
Fogp(e,n) = 256 Iggn when s = 2  (18¢c)

‘ S T T
The functions fgtp p(s,n) and fggr g {s,n) are Tab-
ulated in table 1. With the aid of the function Foypp(esn)

defined in equations (17) and (18) the strain energy stored
in all the strlngers can be given in the concise form

Us‘b e (@ 'TT /Il )EStI‘ str(s ny_'___h‘_":-_(l—y
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It ig8 interesting to note that calculation of the strailn
energy stored In the stringers through integration, based on
the asgumption of continuously distridbuted stringers, gives
the same expression as that obtained by the preceding summa~—
tion, provided the number s - of stringer fields involved in
buckling is equal to or greater than six, It also may be
seen that as thes ring sitrain energy was found to be directly
proportiongl $0 the number of ring flelds, so is the
stringer gtrain energy directly proportional to the number
of stringer fields 1nvolved in digbortions {excoept whon the
number of stringer fields involved is less than six),

Shear Strain Energy Stored -in the;Sheet,quering_

"It was mentioned in the Introduction that the main 4if-
ference between the approach of the preceding reports and
that of the present paper 1s the cansideration ‘in the present
paper of the sheéar straln-energy stored -in the shéet cover-
ing. The caloulation of this shear strain energv was made
possible through the use of an average valué of the shear
gtrain and of an average value of the effective shear modu-
lus for oach panel, Figure 4 shows a panel before and after
‘dtstortions, With the notation of the figure fhe average
angle of ghear of the panel may be expressad ‘ag

e

B 'Y 2(1/21'1){[(“’12) -+ (Wt)(cp1+ (Z'TT/B) xl)]

-"[(Wt2¢4.'xb'+ }Syt')-_(cp1+l(_3“/8-).Xa-):]} L _(39)

v
o

_The:totqlhsheg;,gtrain eneigy.stprei in gll the panels is

TUg, = Z (1/2) VEG_letd R (e

where.the summation has: $¢ be carried out over all the panels
involved.in the bulge._'In this qquation G' stands for the
effective shear modulus of the panel, When the panel is in
the non-buckled state, " G' isi equalito..&i: -If, however, -
the compressive stress in the panél. exceeds: the critipgal
stresgs, it is reasonable t0 assume that the panel will offer
less resistance to shearing distortions. The decresase in

the shoar rigidity 1s likely to dcpond both on the ratio of
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the average compressive stress 'in the panel to.the -critical
stress of the pansl, and on the ratio of the stringer spaé-
ing to the radius of curvature o0f the oylinder, A theoret-
ical evaluation of this dependence appears to be very diffi-
cult., An experimental establishméent: of the connections
should be easier, but no publication dealing with the sub-
Ject is known to the aguthors, Because of this lack of in-
formation it was neécessary to assume arbitrarily an expresgs=
sion for the effective shear modulus, It was decided to use
the equation

. STy .
-.qi=;.§[ag ~.ay(cos @) pJ L (22)

If in this oxpression ag,, él, and ﬁr”are'%quél to unity,

the value of the effective shear modulus is zero at the most
highly compressed stringer, and - 6. ‘&t the horizontal diam-
eter of the cylinder, If ag’ is'equal to, and ay; slightly

smaller than unity, G3 does not become zero even near the

-most highly compresse& stringer. ~In.both cases the vafia-

tion of "GB! “ig lznear with verticel ‘distancé from the most
highly compressed stringer. ~This linear law can be changed

- %0 a parabolic one by assuming P to be greater than unity.

Figure 5 shows theso poasibllities.

Y = e} -
P A

It is reasonable to assume that OEEer ?Eiﬁiﬂhbelng":"
equal, the value of &' will be small in panels upon which
large compressive forces are acting, and large in panels
upon which small compressive forces are acting, Thus the
linear law f£or G' Jjust discussed may well represent the
case 0f a cylinder id which the normal stress distridbution
1g linear, The assumptlon of a parabolic normal strain dis-
tribution shown by the dotted line in figure 6 appears to be
in, reasonably good agreement with the experimental curvé
shown by the full line in figure 6, if the region alono is °
considercd in which the bulge.develops at buckling (@o < 807).

The curve represents the normal gtrain” dlstribution in speci-

men 159 of the GALCIT series ‘and is taken from referefcs 6.

Consequently equation (22) with p = 2 might well represcnt
the variation of G! around the c¢ircumference O6f a mondtoque

.¢ylinder in which the distribution of the¢ normal. stress is

not linear, and the neutral axis is matefiaily shifted from
the center of. the cylinder.

In any case, 1t is hoped that’ aquafion (22) can “be well
enough adaptéd to experimental curves which night be avail-~
able in thé future. ' Calculating from eguiation (22) the :

NI
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value of the effective shear modulus for the. middle of a _
panel results in . BN

et . G{ao - al[cos 2n(1+-1/2)] } ._(339)

‘Upon substdtution . of ‘equations (6), (207, aqa-(zaa)'inﬁo’l
‘equation. {(21) there results. after some,simplification

J
3 m 2
e 20 A s

PR . [ B . - . e

Ush =
' »*'J‘j=o=A i=
L+ 6 [_‘s'i’nj;?’:"l ‘g:-; ein :"’!Lﬁ_?_i'_l_)_] [in _5_:;_1r ¥ a8t 11(11'-12 ]}

C g

SR (P éafeos -—-_Ll"“;l 2 ]y}[cos 'Zﬂ_l_l‘ +1 --1 " (e0)

-

The summation over the ring fields is cdrfiéd oﬁt'inwéﬁben~ -
dix I, With the nbtation : c Ce : :
cos w(;+1}_ .2q1 f(m+l)
- d . m+l et -_._,m'Pl -
i=o . _ o ':'_ A
i - ; “,’

‘the result is

v . . W o e o -

elmr1)  , PR g T C
-£E~‘l €~(mfl)<-H¥ cos —= > . -~ When. . .m+dl > 2 | (24&)

m+ 1 m+l _ - s o -

- =8 ™ whems ptl ia_,_!i_' (34b) 4

: The functiOn, :(m+l) approaches 2L when’ m+lc incraaaea ~
without limit, It is graphed in figure 7 . A”____

In :appendix II the product of the. expreesion in the
first of . the braves of equatlon (23) Qy o,‘was aummod up
over all the-‘stringer fields, - usirg the noxation &ofash(ﬂ n)

te
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"for this sum, write oar ‘:f?.T? szﬁ.uﬁ}"' ' 7'

aof, sh(s n) QEE:}n ){§6+4E4 cos(ﬂ/s)+9 cosﬁaw/s)+cos(5ﬁ/s)]}

-

et e grovmea '4;_._'_1 poTonT F‘s)

It was not found practicable to sum up thie prdduct of the
same expression by ‘the gecond term’in the second brace. It
was easler to calculate 1% numerically. for. the different -
nudbers of strlngers contained in the monogoque. eylinder and
for the different numbers of stringers Invelved in buckling,
-The numerical wvalues of these functions are.tabulated in: B
table 1, Using the notation ayfa sh(s,n) for the second
funection, write~ ' TR e R

Gtd +1 ' o
Ush = o B2L. _%1-1"1) [ ofl sh(s n) a;f_z sh(s,n)] (26)

[ L-{L

al

Tquation (26) can be written in 'a more concilse form by using
the functlon Fsh(a n) dofined as

[

L SR Er -

Sh(s n) = aofl Bh(s n) - a1fa-sh(s nj 'chiéé;)

wl 1l

Work Done by the BExternal Forces

The loading of the monocoque cylinder é0neists of a
pure bending moment which is resisted by the stringer plus
effective width-of sheet. gombinatlions, Consequently the
work Qf the external forces is the sum of the products of -
the normal force agting upon each stringer plus cffective )
width comhingtion. by the change in the length of the sﬁﬁ?ngor
corresponding %0 the assumed d6flectod shapoe at "buckling. . )
In thae preceding reports on the inward bulge type of goneral )
instability the stringers were assumed to be continuously
distributed around the perimeter, and thé Work wasd caleu-
lated by integration. The accuracy of the thcory is now in-
creased by treating the stringere individually, which proce-
durg, of course, necessitates replacing the integration by
summation. . o o S

___, .__. - ._..,.;;_ S = . s

" The normal force P! abting upcn a stringer Plui ef‘ '
¢ C

liegtive gheet QOmbination is asgumed to be giyeﬁ by t

aquation N S e -

- prea PW[ ¥ b,(doe cp) 4’7 (27)
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where Pgy is the normsal force acting upon the most highly

conpressed stringer plus effective shect combination when

buckling occurs., The form of equation (27) 1s similar-to

that of equation (22), 1If the normal force is distriduted
linearly and the eymbol & ig used to denote the ratio of
the shift of tho neutral axis to the radius,

by = §/{1 + 5) and. b, = 1/(1 + 8), provided p = 1.

A nonlinoar »pormal force distribution can be- reprosontod by
the samo formula i1f p > 1, Figure 6 sorves to illustrate
some of these' statements. ' The shortening .due. to bending of
the distance between the end points corresponding to x = O
and x = L of an originally straight har is given dy... -

. ’ L : ’ '.- - . - ' -.-
AL = U/P(dy/dxsgdx
_ .. o - o .,

The effect of displacements in the tangentlal and in the ra-
diel direction is additive. ' Consequently the work done by
the external forces can be written in the forn

(e)

Ty oL

W = S_‘ P'AI; o

. Lo e
<Pc.r}aﬁ"z f [bml(c"o'js ,go)."‘p][(a;«r'/aﬂb%<aw't/'a.sc.')f‘_}; (28)
R ' ST s .

where the sumiatlon must include all the stringers involved
in buckling, 3By using equations (5) and (%), the following

equation is obtained after integration

3.2
o“m=P .
W= ——2L (256 (bo+b, )
4L |
+2 Z{[bo""bl(cosg&) P][(? cos™ 4+ 9 coedli 4 5 -coei--—-sni
: . 8 ' T S B
1=1 A - _ ,

a . .
+ (1/n®) (a sin%%-f 6 sin§§1-+'z sinﬁgi :}}) (29)

-
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The summation of the terms containing by . leads to ex-
pressions similar to those given in equations (18).. In the.
case of the terms containing b, it is more copvénient b0
carry out the summation numerically for given values of 8
and S. With the notation T

" . - - i . ._ . [ =
' L e
(sr2)-1 ot y% o ; oy ey
f (s,n)=256+2 cogZl= 2 cogl=+9 cos =+ 5 cos kil
L L.\ B " 8 s )
1=1 ' o :
e : . Co 8 .
2 o 3 - N R et - ‘
+ (1/n ) 4-sin%} + 6 sin§§3v+’2“sin52£> ]f}.. (282)

the work done by'the external forces méy %e’éivén inT%h; form

-:a’?.n.ch_r o . 2 S mm e s
W= —pr [55 + (28/n®)]sby + blfw(s,n)} (30)

when 8 > 4.

When s 18 equal to or smaller than' 4, equation (?67_must_'
be modified. The modified forms can be written down without
.%ifgiculty with the ald of the expressions given in sgquations
18). - P N T
A Purther simplification of the work expression is pos-
sible through a consideration of the effetct upon the buckling
load of different normal stress distributions, It was shown
in reference 4 that deviations from the lincar law eaused
but small changes in the work done by the external forces.
Moreover, it follows indirectly from the considerations of
reference 5 that- the effect upon the .external work of a ~
shift of the neutral axis may Dbe eimilarly neglected. 1t 1s
reasonable, therefore, to simplify the calculations of the
external work through the gsgunptions; of linearity and zero

shift - that is, to assume that g . . —

- . e aat _mrex La g

§=0. Dby,=0 ~~:by=Ll.. p=1 (31)
On the other hand, any similar simpilifylng assumptions in.
the expressioh for the reducéd shear modulus (equation (22))
lead t0 considerable changes in the shear strain snergy terms.
Although it is admitted that there. is some.'tonihection between
equations (22) and (27), it is not congidered inconsistent %0

W
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keep -the.general law for the reduced modulus ‘while simplify-
ing the normal stress expression through the’ asaumptions con-~
tained in equations (31) because the exact Hature of the var-
lation of G! with the normal stress ig not known at pros—
ent. ' ' ’ o

If, however, oquations (31) noid truel oquation (30) may
be writtan 1n tho simﬂlifiod form -~ ‘ . .

W= (of ﬂa/4L)Pcr[fW(s n)] _ o (30a)

Thisg equatton ¥s valld for any positive even value of s; =8
cannot -asslime an’.60dd value bechuse of.%the symmetry of the
buckled shape with respect to the dottom stringer. Numeri-
cal values of the function fw(s n) are listed in tadblo 1.

Determination of the Buckling Load
The buckling criterion can be written in the form

Utot = Wigor = O ~ (32)

By equating the .expression of the external work given in .
‘equation  (30a) to the sum of the right-hand, members. af equa-
tlons (13}, (19), and (26), the following condition .for. Py

i1s obtainod:

%a?vajéﬁ)?éng(é”n) , j R _
;:.a(sn/ls)(m+l)[(EI)r/ran (n) + (afnm /Ls)Fstr(s n’Ei

f-(ua/SBJ(th/Lz) {[E(m+l)]/(m+l)} sh(ﬂ n) | ‘j'jf:(§$)

This aquation can. be simplified slighélv fhrough‘the assump~
tion that all the elements of the. monocoque are made of the
same material., Dividing through by E(A + 2wi), where 2w,
18. the total {(not the reduced or modifiod) effectiveo width
of the most highly compressed stringer, it is possible to
solve for. the:strain..¢oyp :in the most highly compressed
.stringer at buckling, In the div1sor the effective width'
“and not-tho roduced or modified effectiye width hap to he
‘used in- accordance with tho statements mado in roference 1
in.-conhection with: this problom,
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With Vg = (4/3)nr® the volume of a sphere of radius

r, 4 = 2wr/S the perimetric distanée bétween stringers, - :
‘808 Ly = L/{(m+l). . the ring spacing, the critical sﬁraln _ T
€orp becomes after ' sbme’ manipulatiOn I R

{(z /Vs)f <n><m+1> ot (B0 0 (o )/ 1)

e . R T
. ~ - — s —!-‘1"5.’
] P

+ 0, OaO’?(tr/S)"f(m+1)Fsh(s n) /[_A.+zwt‘)fw(s n)J _ (34)

~
.

According %o equation (34) the critical strain éc;T'is

‘¢ ‘function of :the 4wo pParameters (wfl) snd ~s7 These paranm—
eters must assume integral valiues that make ‘the critfcal
strain a minimum. The oritical s¥train’éarbe A¥nimized with-
out difficulty with respect to (m+i) "ff7¢hé dsedmption is
made that (m+l) may assume any (integral or non- integral)
value. The critical strain then becomes &: centinuous funeg-

- .tlon of the parameter (m+l) so that the minimum condition
"can be obtained’ through differentiation,. :Hence

c o o a —a—

Bémax/B(mfl) =0 =" 2(Ly /Vg) (p+1)£,(n) Iy

~2(am/1,)° !‘str(s,n§/(m1r17

- +, 2(0 OSG’?)(‘l;r/S){(,m-l—l) D. - cos(B'rr/m+l)]

EE re L e s r.‘:‘*'_-:r;._‘“‘_"

.'-_'“'- i sin(er/m-l-l)} h(s n) M\H 71.1 T(esy

12 the sym‘bol M" is introd.uced. by 'che deﬁnﬁion ,-_:-’_f -

R L Iy e - L

_gfh§'(m+l) [(m+l)< coeéé%) - ﬂsini%%] - 6555

and the’ value of. the function M' 1s calculated For &if?gi—'
ent values of (m+1l), the. function will be found almoet _con-
stant. This may.be seen from table 2.".Since M!'/(m+l)Z
appears in equation (35) in' & term which 1's usually small,

. the accuracy: of the.. calculations Hs not imnairé& by reﬁlacing
M! by the wonstant: value 60, nThls substitution reduces )
equation (35) to the 31mple fburth dcgroe equaticn' '

-."Q_' :.1~-_.

- ';.,{
.
t

) i
: | Ji
:.il: “l’: | A’u .
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(me1)* = [(2w/L1)?Fstrls,n)
-.1.e<.tr/'s>rsh(s,z;>1/-[_(Ll-/vg'),f;(a)zrj (37) \

Bquation (37) in conjunetion with equation (34) wounld

- represent the domplete solution of the problem of the inward
bulge type dbuckling of a monocoque cylinder if tHs correoct
value of the parameter s were known, This value, however,
can be dotermined relatively casily with the aid of the
trial-and~error method suggested in the following section,

'If greater acouracy is desired, equation (37) ocan. be
used as a firet approximation for (m+l) Then the correct
value of M¥! can be taken from table 2 and’ equation (57)
written in the modified form

(m+l)'.= [(Zn/Ll) Fstr(s n)

- (0. osov)u'(tr/s)r h(s n)]/[(Ll/Vs)fr(n)I J (37a)
This wag done in the numsrical calculetlons, _ v
Procedure for Calculating, the Ggiﬁdpal Strain _ R

As stated previously, the monocogue cylinder discussed
in this- report is assumed to have = stringer placed at the
bottom (o = 0), The value of 8 .representing the stringer
flelds involved in buckling must be, therefore, an even In-
teger. On the other hand, deformations at buckling are not i
likely to extend to the tension side of the monocoque bscause
of the great shearing rigidity of the non-buckled panels, .
The investigations reported in reference 3 even showed that
®o = m/n usually varied only between 35° and 70° Conse-

quently the number ‘of the values g may BEEULE is re-

stricted sufficiently to pormit a %rigl-and-error proceduroc

based on simple guessing if. the number S of stringors con~
tained in the monocoque is not t60 large. This was the case .
with all ths GALCIT and P.I.B. specimens. ‘One, two, or

three likely values were assumed'for ‘s, the corresponding
values of (m+l) were determined from equation (37), and

the critical strain was calculated for each of the asgump -
tione by subsitituting the values of the prOper functions of
(m+1l) into.equation (34). The' smallest of the critical ~
straing so obtained was considered the actual critical strain
of the monocogue c¢ylinder.
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When the menocoque cylinder contains 'a greater number
of stringers, there may be to0o many possiblexvalues for s
to psrmit close guessing. In such cases recourse may be had
to the semiempirical data presented in figure 10 of reference
%3 gnd in figure 18 of reference 5. ' Tha predictéd value of i
n can be taken from the figure if the geometric and mechan-
ical properties of the structure, and ths maximum strain . .
€er are known., The maximum sitrain in turn-mey he calculate

approximately from the equation ) CeTTe T R

] -1:- na. _L TT-/Istr g;rao .‘- _- (38)
[S cr. A Ll ra P ) - .

where the subscript o signifies that the moments of inertia

of stringer and ring are calculated without conslideration of -
the effective width of sheet. With an approximate value fov

n thus calculated, the minimum critical strain can be de-
termined by comparing values obtained from equations (34)

and- (37n) upon substitution of integral velues of s close -
to the value s = §/n. R -

To reduces t0 a minimum the work involved in the epplica-
tion of the procedure, tables 1 and 2 have been prepared,
which enable the stress analyst to obtain direectly the nu-
merical values of most of the functions needed for a solu-.
tion of the problem. ) et T " S T T

... _COMPARISON WITH BXPERIMEN®. ° = . - ~ -~

. I3 v e e ST .
Remarks e e e )

- - - LmE TRl ey T T D -

The present theory was applied to all.the sheet-covered
gspecimens te'sted in pure bending at GALGIT, specimens 26 .
through 68, the dats for which are given in reference 2, and
the two types of specimens tested at P.I.B.,, the data for )
which cen be found in reference 4, The computations are
presented in table. 3. , The following.remarks may be of help .
in understanding details of the numerical work involved in-
the application of the theory. - S

The effective width of sheet to be added to the ring. |
section was sssumed to be equal. to the width of the ring .
section, as already mentioned., The effective width of sheet’
to be added to the stringer section was calculated arcording

t 4 L. . ' ’ ., '.. . -.-.-'_ .
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to the procedure presented in refersnce 5., The average re-
duced (or modified) effective width was assumed t0 be equal
to the reduced effective width at the most highly comprosgsod
stringer when the number of stringers involved in the dulge
wes small, ‘This .assumption certainly underestimates the
average bending rigidity of the stringers, 'and consequently
leads to a conservative value of the buckling stress. Never-
theless, the deviation from reality should not be too great
since the strain energy of bending is small in the stringers
far from the most highly stressed stringer, The influenco
of the sitringers upon which less than the maximum compres-
sive force 1s acting is more noticeable when there are many
stringers involved in the bulge, In such cases the averagp
reduced effective width was assumed greater, as a maxlmum
equal t0 the total (non~-reduced) effective width of the most
highly compressod stringer,

In the expression for the reduced shear modulus G!
.the constant ao . in equation (22) was assumed to be equal
to unity. Sinmilarly: a; was taken as unity whenever S
wasg equal t0 or smaller than 24, TFor 8 = 40 the value of
8, was assumed to be betwsen 0,80 and 1,00, The diffsrence
in this cholce is based on the difference in the movability
cf the buckled panels., Obviously much less movability re-
sults: from the buckling of a narrow panel in a cylinder hav-
ing 40 stringers than from the dbuckling of a wide panel in
s oylinder having only 10 stringers, provided the radius of
the cylinder is the same, The ratio of the maximum stress
to the buckling stress of the curved pancl also has an of-
fect upon the shearing rigidity snd was approximatoely taken
into account in the choice of a; 1in the case of the cyl-
inders having 40 stringers.

Ag discussed earlier, the assumption of p = 2 in
equation (22) may represent a curvilinear shear rigldity
distribution, posesidbly corresponding to a nonlinear normal
stress digtributlion in the bent monocogque cylinder, a no-
ticeable shift in the location of the neutral axis, or &a
combination of the two., Since in the case of test specimens
having but 10 stringers the neutral axis must be conslder-
ably shifted under the bending moment that causes general
inegtability, p was assumed %o be 2 for the 1lO~stringer
monocogues. In the case of test cylindors having 20
stringers the critical 'strain in gencral instability was
usuwally calculated on the basisg of both assumptions p = 1
and p = 2,

The calculation of the external work tarm was based on
the assumptions represented by equations (31).
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Application of the presént- theory +to- specimén 28 indi-
cated that the_smallest buckling Idad would be ohtained when
only one ring wasg' involved in failure, .Hence in this case
the ‘strain energy .stored in the ring (col 25.) had to e
calculated acgording to equation (1lb) instead of equation
(11a). . e T

)

- Illustrative HExample.

For a better understanding. of the numerical work pre-

. sented in table 3 detalls of the calculations. are explalined

using spec¢imen, 31 as an examplei Referende:2 gives § = 20,
Ly = 4 inches, r = 15, 92 inchés, - and % =.0,01l inch. The

ring and stringer sections-are those designate& as “Ts Cand
S;, 'respectively. The first three” columns in - %able 8 con—:
tain data of the specimen, Column 4 gives the valus of °
(2m/1,)% = 2.487  as -taken from table 1A, In the fifth col-
umn the assumed value of ¢ must be fillod dAn.  As a “firs}
trial s is assumed to-be 4, which is:-just about the small-
est possible choice. :This gives Po = (&/20)m = .36%, and,

as was stated earlier, from the investigations Tof reference

3 it follows that @0' should have a value between 350 and,
.700 ) ,.-.- T . i o oE ‘." ‘. J_‘

PR N G e

The (ordinary) effective width i's approxim‘%ely E”iqu-
lated to De 2 inches. In estimating “2Ww!, the average: mo&—
ified effectiv Width the choice 1ies between 2w° = 2 :

cause of the prevalence in the strain—energy in—stringer
terms of the most highly compressed stringer against the
~only one additional:. stringer involved in- buckling on each -
side of the plane of symmetry, “2w'! = 1.7 inches appears 8
reasonable suggestion and hence is adoPted ’ :

st T which is taken from figure

7 of reference 5,' or else may be calculated from equation
(34) of reference 5: -

Column 9 contains,fI

{h + (t/2)-—"l‘:(2§')3/(2.4=r)-j}| '
» + L -
8%r » o (1/2wt) + (1/A) o '

I = I

str »

- - S

T (4/5)[(2w) /(z4r)] (Zwt>
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where h -ig the distance of thé centroid of the stringer
from the sheet covering of the cylinder.- Table 1 gives
fofr r(s n) = 400 when S =20 and &= 4, The product of

this value Dby - str r ig filled in, “in column lO In qolumn
11 Tg4p ¢ 4 listed after caloulation from equation (36)
"of reference 5:

, A ) 3
Istr t = Tgtr ¢t o ¥ (1/12)(2w) ¢

wﬁégél";;rhé o . is'tﬁe momeut of inertia of the ntfinger..
without the effective width .of sheet for- -bending in the- tan—
gontial -diredtion, Multiplication of -this value by ‘
fegp $(8s2), which ig found in tadle-l to be 2.56, yields
the .value -appearing.in column 12. ~Column .13 i6 then the .gim
of 'co.l-'.um;n.s:.' '.l'o“._ai‘nd 12, oo : ' S
1 ‘The walues found in columns 15 and 18 are ‘those ‘givén’
in table -k corresponding to .a; = p = 1. Column 19 is the
value In ‘column 15 less that “in- column ¥8,  'If several steps
in "the .calculations ‘are - anticipated, (m+1) 'can be estimated
to be dbout 5 so that from table 2 M" s about 58, The -
proeduct cof . columns 14 and 19 ig liated in column 20, the = .
value of HM' in column 21, Column 22, the product of gol-’
umns 20 and 21, contains ons of the terms in equation (37a),
the egnation, from which {m#1l) . will -Be czlculated, Jolumn
23 1ists f£(n). as:taken from tedble 1. . The value of I,

in column 24 was,. oalculaued according to ‘the suggestions of
reference 5 .- that 1s, the effegtive width of -the sheet was
assumed to be equal to the width of the stripger._ With the
velus of Vg <taken from table 14 the vhlie to be filled, in, in

column 25 can be easily oomputedr- This 18 the ‘sagond term -
needed for the caloulation,-of -{(m+k), The third term de. ob-
tained by multiplying together the values found in golumns 4
and 13, amd ls listed in column 28, BSubtracting the value
listed in..¢olumn 22 -from that in column 26, and dividing the
difference by the value in column 28, gives (m-*-l)4 .These
operations are listed in columne 27 and 28.. It should be
noted how small ‘the value in column 22 is as comoared to that
in column 26, . Now (m+1)® and (m+l) are obtained and
listed in columns 29 and 30,
In order ¥0o calculate €nax from equation (34), the
values listed in columns 20, 28, and 26 must be multiplied
by-thoupquer'fupctdonq of (m+l1), Thus column 31 contains
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the walue of column 25 multiplied by (w+1)®, column 32 the
value of column 26 divided by (m+1)®, and column 34 the
value of column 20 multiplied by £(m+l). :The.value of this’
latter functlion is taken from figure .7 and is listed In col-
unn 33. The sum- of the- values in columns 31,, 32, -and 34 i;
given in column 35, GColumn 36 liéts Zw = 2 inches as as-

suned at the beginning of this numerical example1 column_37 b
the cross~gectional area of the stringer plus -effective
width combinatlon., This is 0,0524 square inch since the
cross—~sectional area of the stringer alone is 0,0324 square
inch, and the thickness of the shest is 0,010 inch., OColumn
38 contains the value of the  function -fw(s.n) .as8. taken

from %able 1. Finally, a multiplication and a division,
carried out in columns 39 and 40, yields the valie of the
theoretical critical strain emax' ‘'In the present case

‘€pgx = 0.00245 1is obtained .(col, 40) - .

In column 41 the experimental critical strain is listed.
For specimen 31 it 1s 0,00190, o value definitely smaller
than the ‘one obtained theoretically. On the other hand,
s = 4 may not be the correct ‘choice, Indeed, filgure 10 of
reference 3 glves n = 3, approximatelv, if the geometric
and mechanical properties of specimen 31, and the experimen-
tal critical strain are used, The choico of =8 =16 should
be best, therefore, since it yields .n = 20/6 = 37, which
is close to the value 3,  In table 3 the entire. calculation
ls repeated now on the agsumption that s = 6, and not 4,
and all the other assumptions are kebt unchanged."fhis fime.
(m+1) TDbecomes 7.1, &nd the theoretical critical stfain

€nax =-'0, 00217, This is gbout 14 percent higher than the ex-

_perimental straln._ The reporteg number. (m+l) " of ring )
fields involved-in buckling ig 9 as given in column 48.

To make sure that ' s = 6 really &ives the minimum’ crit—
ical strain in the inward bulge type instability of this

.monocogue cylinder, the calculations are once more repeated,

this time on the assumption that s & 8, This assumption
corresponds 0 n = 2,5 and gives (m+l} =-9.54 and
€nax = 0.00356.

CONCLUSIONS

In this report the theory of the inward bulge type of
general instability has been extended to include the effects
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of the shear sitrain energy stored in the sheet coveringi
Tables containing numerical- values of the functiona involved
in the numerical calculations have been :prepared which permit
an.easy and rapld computation of ithe meximum strain at fall-
ure, . .Comparigon of .the theory with tho experimental regults-
obtained gt  GALGIT. and P.I,B. show an averagse . deviation .of -

10 percent, and a maximum deviatibn.of 24 percéntL

The theory as presented in this report has the follow-
ing shortcomlngs. ' _ A

1, The tables ‘containing the numerical valuesd of the
functions involved 'in the calceulations have been propared
only .for .specimens having the 'same- number'of,stringars ad
those' of the GALCIT and P.I,B, test -series. ihe tables’ van
be esasily expsr¥ed to include other numbers lof stringerd,
but 1t is believed that 'this work should be andertaken only .
after the questions listed under (2) and (3) are solved in a
satisfactory mannex. P

2, In the develcpment of the theory an assumption was
made concerning the shearing rigidity .of. 8 curved panel 0%,
sheet which hags- buckled under the action of sheaning atresses.
This aesumptian should be replacod by data--t.0- bo. .0btaingd .
from oxporimont.-- . o e it ot tge el eem

X 3‘ Because of cansideratiOns of econamy all erperimﬂntal

data available at present -on g@neral instability have -hasn :5
obtained -with specimens much..smaller than actusal aircraft
structures.. ‘The .scale ¢ffoct has nocossitatod the uss cﬂ« ;
~comparativolv woak: rings. and. stroag stringers.\ Moroovor, .
all tests have been conducted with cylinders of apnroximateiy
the same. dlameter.‘ It 15 Yelieved that the range of tesbts’ "
nmust be extendad, ospecially ‘im the direction oF larger diw
ametors, bofore tho proolem of general instability can be
'considared s finally solved. o AL

- o . - - -

Polytedhnic Institute of Brooklyn,‘ _
Brdoklyn, ¥. Y., March 1944, : -
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APPENDIX ‘I

" Deflected ‘Pattern of a=E?n? :ﬂi

It can be shown from the theory of Fourier series that
any’ symmetriCally deflected pattern of a circular ring édan-
be represented by o f

.~ }: kcos(kn@) t-.j, ,::T(Al.l)

-";f- ¥§.”: klé,i.iz, - S ]m[ < n/n

From: the dbasic assunption. of 1nextensional defermationa (see

eqitatioh . (4a)), it follows that IR : R
Wt = s zz (e, /k) sin(kn¢) o . - (A1.2)
PR . 1‘— 1 - M ;_ S . - — P - —

These funétiOns are’ séen tio- Satisfy automatically the five
conditions, aj b, L and f laid down in equationa (4) of
, this paperi = T R .

Now by imposing the requlrement

.- - e B . o T - . . o -

P Wr/dm Moz gy =0 ., (1)
wﬁere.,-'ﬁ RET ; B “_u: L --??ff
p = o ‘2, 4 6,..., 2(u—1)

the remaining two requlrcments (4d) and (4g) will bo ful-
fllled.(provldcd u = 2) and at ftho same timo, (u—2) addi-
tional coaditions will arlse. C ) o

Let | G1 ; 1 and Ck = 0 if k> u + 1. Then this
_criterion can be written as a set of w linear eqnatibns 1n
u unknowns.. .
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. i1
c 14 05=0p# st (=1)F op# rre e (<1)™F 0y, = O
o 20 20 s s 0 ( )k c G s e
- 1+23°0,-3Cg+ "+ (-1) k v
1] 3. ' '
+ [(ul) ](u+1) Cpt, = © -(a1,4)
2(u~21) 2(u-1) 2 (u-1) . _
- l+2 : . o - c +-..+( l) Ck_‘_ v v
¥ e(g;l)
[( 1) ]Gu+1) - Coiy = ©
The common determinant 'of this system is:
2° 3° (u+1)°
22 38 (u+1)®
_ 2% g% eee (url)¢
A = £ . . ' (41.5)
.:2a(u-1) 3e(u—}) (u+1)a(“'l)
If u 1is evﬁn, the plus sign i valid' if /2 iEME#en, the
minus if w/2 . is 9dd, If w is odd, €Be plus sign~ig :
valid if’ (u—l)/z 18 eVen, the minus if (u-l)/z is o&&.

It will Aow be shown that’ equation (Al 5) can ba writ-

ten as the double product.

T _——

(Ai 6)

Lo

-

where the_capltal pi‘s signlfy a doublc series of multipli—

cations.

(u) (u+1)
- IT 1
i=a Jj=s
[(u+1)a

t

- 2710

Sufl)z

=.[(3 -z )][(4 -2 )(4 -3 )][(5

- a7 ) -

e

T —— —

I e et

(41.6a)

-— - -

2 )(5 -8 )(5 -4 SN
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This 1s equivalent to the combination of the difference of
the squares of all the numbers 2, Oy 4, **+, (u+l) taken two
at a time. . TS PR PR : : -

The (i- 1)th column of the determinant consists of the
consecutivie ,elements formsd by, ralsing. the’ number i to all
even powers from O to 2 {u-1). If this number i is ré-
placed by either of the numbers  4j, then the (i-I)th and
(j=-1)th columns w111 bécome 1&3nti¢al. ‘Then two columns of
a determinant are- 1dentical 1ts value becomes zero.

Now it is;obvious that when 4, . js expanded out by .the
method of minors, it will take the form.

Blaile, e gy e c.u+_1>]

e v ! , ;,-.

where P :consists only of powers and products of the num-~
bers 2, 3,i':’,;A1,.?"'£u+l} Oonsider this as a poly-
nomial in 1 of'deg 2(u-l). Then it must contain exgctly
2(u~-1) roots. But it was seen that i = %3J 1is a peir of
.roots af: b Hence all the roots must be 1nc1uded in the
set of l '1) numbérs the values of #hich 4 can take on.

' Gorresponding to these rodts: %here will bé“ﬁhe fac#ors'
(3= i) and j+1) .or, What is equivalent to this set, the
factors (J -i2), “the latter 0il in number. It is seen
that all columns of . A are similarly constfdcted in that -
they have a constant number raised to the same even powers.
~Thus:all the factaors of 4 will b'e of the form given by
(k1. 6) Pheré still ‘remsins the'questign ‘whether (AIL.6)
might be multiplied by some constant factor. If the firset
numbers in'each parenthesis of (Al 6) are multiplied togsther,
there results:the term - )

’

p = (223 (aH) (%) (%) ... (17 L., (u+1)2{v-1)

. \
M
A C e e s - Y e

which is the principal diagonal term of 4, which term is
known to be positive. Consequently (Al.6) represents the
correct evaluation of. 4., In an analogous manner, the nu-—
merator determinant for any coefficient, Oy, can be put in
the form:

(u) (u+l) ' .
Ack:*n II (.jz'—iz)’ Jg> i, J 7‘:

(AL.7)
i%1  j=2 Loig
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A

where the sign is the same as 'that of equation (A1.,6). Thus
equation (Al,7) divided by equation (AL, 6) gives

(ut1) (18 u+1
6, = II -1)/

=32

12 - k8 , 14k (A1.8)

In the denominstor the absolute values were used as iln=
dicated by the bars, Thls 1s permissidble, since . Cg must

be positive bocause A and Bog have the same sign aa

stated. The values of the coefficients are now calculated
for three cases: - - S e -

For .u=2, 6p=1,6, Oz=0,6 (A1:9a)

g/, C,=2/7 (41.9D)

For uw=23, C;=2, Cs
For u=4, Op=16/7, 03=27/14, O, =16/21, O =5/42 (Al.9¢c)

-—— e " -

This the equation
wyp = =B [cos(np) + 1.6 cos(2np) + 0.6 cos(3np)] (Al 10a)

satisfies all seveén conditions enumerated in equations (4&)
to (4f). The function :

Wy = =B [cos(n@) + (16/7) cos(an) * (27/14) cOS(Bnm)

+ (16/21) cos(4ncp) + (5/42) cos(5ncp)] (Al 10‘b)
will fulfill two additional requlrements at P = woa'

Bquations (A1.10a) and (A1.10b).are plotted in figure(2))
It is seen how closely the latter curve hugs ‘the original'
cylinder in the region of the termination of the bulge. 1t
ig evident thet the more conditions are assumed at the end
of the bulge; the smoother the curve will become., In the
limit, when an infinite number of derivatives ars made %0
vanish at o = @, the deflected shape probably will bocome

coincidént with the original clrcular ring (except perhaps
in an interval cldse to o = 0),"

In reality, however, the deformed pattern will be such
that only a few of the derivatives vanish at the end point,
The correct number of terms %o be used should be determined
from considerations of the minimum of the total potential of
the system, This cannot be done without the knowledge of the
law governing the shearing rigidity of the buckled panels,
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APPENDIX II
\

CALCULATION OF SUMMATIONS

Introduction

In- order to carry out all_subsecuent summations, use
shall be made of the fundamental identities:

cos x + cos{x + a) + cos(x +2a) + *** + cos [x + (n =~ 1)a]

‘= cos [x + (n = 1)a/2] sin(na/2) esc(a/2) +  (A2.1a)

sin x4 :8in(x + a) + sin(x + 2a) + *** + gin [x + (n - 1)a]

= sin [x + (n - 1)af2] .sin(qa/a) csc(g/%) | (A2.1b)

Proobt’ of thess identities may be found in reference 7. If
x . 0,, and;,(n - l) .is replaced by ¥, there result the
forhg! S T a . + '--,-.__-‘___. el T

N S
:Lzz .eos(ia) = coslVa/2) .ein [(N + L)a/3] csclaf2) |

tr

i=o0 . .

o & (1/2)"[T+ coslla) + sin(Ra) cot(af2)] = -+ '(A2.2a)
- I
) stalde) = in(iaf2) fin [(F+:1)a/2] ddola2) Tirnl -
=0 e {1f2) [T - cos(ma).+-sin(Na).bot(aJe)]f (A2.2D)
Conmequentlys & © - o i o e ulil ooy o0 s
(5/2‘)_‘1 . . R . . . . ) . __r. . - s . L . ‘_..
oosfawiK/s)_.ccs[(s/E) 13(ﬂK7s) sin(§/2)(ﬂK/s) ¢sc(nﬁ7§7 (Aéjj)
= ; v; vwi',:'~  .= 0. 1f K ia av;n;- -.-“ ;~ _;:i (AZ 3a)
et T o 2 . \. when , K £ la. [, ..
Cir o it e L =1, iz ‘K is, odd S - (A2.3b)
v R LrL Ly IR .<= s/a’ ',, - | ;‘_ : nhen K (‘hz .»30)
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where X, 1, and s are positive integers. Subiracting 1
from equation (A42,3),

4

(s/2)=1 _
ST cos(2mik/s) = <1, if K is even (a2.5a)
3:1 ' 7 where K # 1s

= 0, if K is odd | (A2.Y4p)
= (s/2)-1, when X = 1s (A2.k4c)
Also from (A2,1a):
(s/2)—1 - ’
}: cos{2mk/s) (L + 1/2) = cos [ (vK/s)
i=o

+ (3]2 - 1)(nK/s) ] sin(e/2)(nX/s) csc(nE/s)

0 for 11l X, X £ is (A2.5a)

]

(-151(s/a) for X = ls ~ (A2.5b)

Terms Involved in the Strain Ensrgy
Stored in the Stringers

With the aid of equations (A2.4a) to (A2.4c) of this
appendix, the summations appearing in equation (17) of this
report can now he calculated.



NACA TN No. 968

(sfa)-1
256 Igtr p+ 2Igtr » Z L2 cos(mifs)+9 cos(3mi/s)+ 5 cos(5mifs)1®
=1
(e/3)=2 S
+ (2/n®) Ter t Z (4 sin(mife)+6 sin(3mifs)+2 sin(5mi/s ]2
i=1 ’
(sfa)-1
= 256 Igpp p+2 Iggr o z [22 cos®(mi/s) + 9% cos®(3mi/s)

i=a

+ 5.2 cos(S-rri/s)]
$2 Igpp ) 2 [(2)(9) cos (m/e) cos(3mi/s)

+ (2)(5) cos(mi/s) cos(5mi/s) + (9)(‘?) cos(3mi/s) cos(5mi)

+ (Z/nz)lstr % [y® sinz('ni/s)+63 sin2(3'rri/s)+ 22 sinz(‘jﬂi/S)]

+

(2/n®) 14, 4 Z 2 [{4)(6) sin(mi/s) sin(3mifs)

+ (W)(2) ein(mifs) sin(5mifs) + (6)(2) sin(3mi/s) sin(5mi/s)]

|

Istr {256"'2 z (1/2)(2°+ 9%+ 5%)+ 2 Z (1/2) [2° cos(ami/s)
+ 9% cos(bmifs) + 5° cos 10mi/s]
+ 2 Z [(2)(9)(cos Yri/s+ cos 2mi/s)+ (2)}(5)(cos 6mifs + coslifs)

+ (9)(5)(cos 8Bmifs + cosZTri/s)J}

+.

(Ietr £/n2) {2 Z (1/2)(4% + 6% + 2%) - 2 Z (1/2) [¥° cos(2mifs)
+ 6% cos(6mifs) + 2° cos(10mifs)]

+2 Z LW (S)icos onifs - cos Umifs) + (W)(2)(cos Ymi/s ~ cos 6mi/s)

+ (6)(2)(coe 2mi/s - cos Srr:l/s)l}
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All these summations fall directly under the types of equa-
tions (A2.42) to (A2.4c)., By use of these formulas, there
is obtained: ’

ypelorm) = Tgge 2{C(s/2) = 1)(2° 5 9 1+ 5% - 2 (@) + @(5)

£ (9] + 256‘}

+ (Iggr 4/0°) {((5/2)—?‘1) (WP 6%+2%) + 2[ (WI(B) -~ () (2) + (6)(2)3}

if s > 4. Or Lg.é* ¢7*
’ T ® "?:;
Fetr(s,n) = (558) gy ¢ + (Egslng)Istr t ' e

(A2.62)

fotr rl2:n) Igtr r + fotr $(em) Igtr ¢

It follows from actual calculations (or equation (A2.4c))
that

B0O Tgpp v + (B4/n®)Igpr ¢ if s =14 (42.6b)

and

Fetr(s,n) = 256 Igtr r if s =2 (a2.6¢)

Terms Involved in the Shear Strain Energy
Stored in the Shest

The summation over 1 appearing in equation (23) has
to be evaluated. '

-1 ST COBUEN 81 (1 1/27F 5 (8] CoR(10n/s) (1T'1/é)‘]}"""
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(s/a)-2
) {ucm(m/s)“m (141)/8] +6 [sin(3mi/e) + sin Im(1+1)/s]
e +2 [sin(5mi/s) + sin 5u{s + 1)/53}3
= ) {(1/2)"[1 - cos(2mtfa)] + [cos(nfs) - cos(2n/e)(t + 2/2)]
+ (1f2 [3 = cos(enfs)(1 + 201}
) 35{(1/2-) [1 - cos(6mi/s) ] + [Loos(3n/s) - cos(6n/a} (1 + 2/2)]
+ (1/2) 1 - cos(énfe) (1 + 1)3}
. {(1/2) [1 - con(10mi/a)] + [oos(5nfe) ~ cos(10n/s)(1 + 1/2)]
+ (1/2) [1 - cos{r0n/e) (1 + 1) ]}
NG {Toostent/a) - costimt/e)] + Loos ens - 1/2)/s
— cosCm/a) (4t /W] + [eos(enfa)(s + 3/2) = cosCim/s)(2 + 3/4)]
+ [eos(2r/s)(1 + 1) = cos(lm/s)(1 + 1)]}
2 Y e {[cos(’-h'l/s) - cos(Bmifs)] + [oos(lnfe)(1 + 5/1)
- con(6n/e)(t + 5/6)] + [oos(ln/e) (4 = 1/4) = cos(6n/e)(L + 1/6)]
+ [oostn/e) (4 + 1) - cos(6m/8)(1 + 1) ]}
s Y ©@ {[cos(ani/s) - cos(@mi/s)] + [cos(2nfs) (s + 5/2)
- con(Emfs)(s + 5/@)] + Looaen/a)(s = 3/2) - conlEnfu)(t + 3/8)]
+ [oos(2n/e)(L + 1) = cos(em/e)(d + 1)3}
=y {(15 +36 + W) + [16 cos(m/s) + 36 cos(3n/s) + ¥ cos(5nfs)]

+ [£1(8) cos(2n/s)(1+1/2) + £5(3) cos(ln/s)(1+1/2) + £, (8) cos(bw/s)(1+1/2)

+ 2,06 conlEn/a)(2 + 1/2) + () conCionfa)(a + 1/22]}
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where the f's are functions of s alone.

From equation (A2,5a) it follows immediately that this
summatlion reduces %0

((s/2))[56 + 4 (4 cosm/s + 9 cos 3n/s + cos 5u/s)] s >4 (a2.72)
' ey £1 ghis,n) =[56 + 4 (4 cosm/s

+ 9 cos 3m/s + cos 5m/s)] s> L (A2.7p)

-

‘Carrying out the summation numerically, it is found that

8o f1gn (8yn) = a,(128/n°) if s=14 (a2.7¢)

=0 . if g =2 tAE-Yd)

. There is left the evaluation of the last bracket in
-equations (23),
(m+1)=1

Z Ceos 2m(j + 1)/ (m + 1) = cos(em/m + 1)3 ]®
j=o |

Z {(1/2) [1 - cos Um(3+1)/(m+1)] +(1/2) [1~cos Ymi(m+1)]

- cos(lm/m+ 1)(j+1/2) = cos(2m)/(m+ 1)}

(m+1) [1 = cos(em)/(m + 1)) - cos _H-Tf/(m + 1)

(m+1)-1

[cos(Um/(m + 1)] .[,j + (1/2)]

J=o0 .
From equation (A2,5a) it follows that the last bracket van-
¢ ighes when (m + 1) > 2, Hence the summation reduces t0:

flo+1)/(m+1) = (m+1) [1=cos 2n/(m+1)] for (m+1)>2 (AZ.’sa)

e+ 1)/ (m+ 1) =16 for (mn+1) =2 (A2.8b)
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Iable 1. Strain Fnergy Expressions
R_1[ SHEAR ] [WORK ]
S {n Potr.r(8sn) | Latr £(8,n)] L1an(s,n) IZ;hf‘in) fggh-(.a;n1 £x(n) rw(a,n)'
a=m 4 R

0 | 2.5 400 10.24 20.480 15.758 17.837 | 20016.4| 380.783
12 5 400 719 | l4.222 11.897 12.969 | 35445.3| 386.866
% |4 400 4 8.000 7.249 7609 86071.5| 392.734
20 | 5 400 | 2,56 5.120 4.809 4.961 [169986.4| 395.387
T 0 —
10 |5/3]| 330 60.48 143.4 104.209 | 120.453 | 5355.1) 333.467]
@ 3% 42 99.-59_0 80.229 88.993 | 9434 | 333,765
8/3 330 23.625 56,020 49.745 52,728 | 24529.8 332.915

20 | 10/3] 3% 15.12 35.852 33.255 34.513 | 49135.4 332.088
2, | &4 330 10.5 2/.898 23.637 24.25, | 86071.5 331.539

s=8

16 |2 4kp 56 166.055 | 138.426 | 151.153 | 9434 | 433.574
20 | 2.5 440 35.84 106.275 93.259 | 100.248 | 20016.4| 436.819
3 Mo 24 8/9 73.802 | 68.204 | 70.913 | 35445.3 438.151

o |s LL0 8.96 26.569 25.834 26.197 |169986.4! 439.527
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Table 1. Strain Energy Expressions (Cont.)
STRINGER ]I SHEAR 1 RING] [WOBEK |
S| n  |[fstr.r(s:0)| fatr.e(sm)| T1sh(5,0) |f26h(8,n)| T2sn(s,m)| In(n) (fuls,n)
p = l P = 2
. s = 10 !
20 | 2 550 70 230.943, |195.003 211.672 | 9434 | 541.860
2% | 2.4 550 48.61 160.377 71.409.? 75-587? 17588.4 | 545.425
L0 | 4 550 ~  17.5 57.736 55.415 .56.588 | 86071.5| 5.48.937
B.- 32
y 40 | 10/3| 660 30.24 105.778 99.893 102.765 | 49135.4] 657.898
8= ]Jp
40| 20/7 770 48.02 17,0388 |161.211 167.426 | 30L45.4| T762.753
8 = 16
/ - . ,"__ ———
, 150 | 2.5 880 71.68 265.85 240.77 252.77 . | 20016.4| (847.524
Table la. Auxiliary Expressions
, L | 1 2 3 L - 5 6 7 8 1

r | 10 15.92 16
(4/3) rre3 I 4188.8 16901 17157
' Table 2.

-

_M'Bﬁ& 2

W = (m2)’[(mD)(1 ~ cosl)-mrati2A)

-] 7

8 9

’

10

oc

(2fV11)2| 39.478 9.869 4.386 2.467 1.579 1.097 0.8057 0.6169 0.1542

u 8.0 5L.9 58,4 60.3 61l.6 62.3 62.9 63.2 6L.9

“ o\
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Table 3. Calculation of the CriticelCompressive Strains

L6

[y [2}| €3] YA 2[5] 6} | 71 |re8l (9] (10]
GALCIT S|y (2qy£%) s [Zwt r t | Istp.r (9)
Spec. No. (1n.)] (in.=%) (in.)| (in.) |(in.) |(in%xi06) | x fgip.r(s,n)
25 40 8 0.6169 |10 ] 1.5 | 15.92]| 0.01 632 .348
26 40 4 2.467 10| 1.5 | 15.92| 0,01 632 348
27 40 2" | 9.870 12| 1.5 | 15.92} 0.01 632 L1700 L
28 40 | 16 | 0.1542 g | 2.0 | 15.92} 0.01 669 . L
30 20 8 0.5169 61| 2,015.9210.01) 669 278 ) —
31 20 JA 2.467 4| 1.7.] 15.92] 0.01 649 S
31 20 4 2.467 6} 1.7 | 15.92] 0.01 6.9 214
31 . 20 L .| 2.467 81| 1.7 | 15.92] 0.01 649 .286
32 20 2 9.870 | 6| 1.7 | 15.92]| 0.01 649 .21
35 10 g8 -l 0.6169 L1 2.2 1 15.92] 0.01 680 272
36 10 A 2.067 L | 2.2 | 15.92| 0.01 680 272
37 10 2 9.870 L | 2.2 | 15.921 0.01 680 .272
38 20 1 |39.48 6| 1.7 | 15.92| 0.0 | 649 .21,
38 20 1 [39.48 6| 1.7 | 15.92{ 0.01 649 .214
39 40 1 39.48 12 | 0.8 | 15.92] 0.01 5&% .361
39 70 T 39,458 12 | 0.8 | 15.92 0.01 5 <301
) 41 40 8 0.6169 [10 | 1.5 | 15.92| 0.015| 720 .396
42 40 4 2,467 10 | 1.5 { 15.92| 0.015| 720 .396
43 40 2 |.9.870 12 | 1.5 | 15.92| 0.015] 720 475
45 20 8 0.6169 6| 2 15.92] 0.015| 760 .251
%5 20 8 0.6169 5] 2 15.92 0.015| 760 L2510
L6 20 4 2,467 6| 2 15.92| 0.015| 760 .251
. 46 20 4 2.467 6| 2 15.92} 0.015| %60 .251

47 20 2 9.870 61 2 15.92| 0.0150 760 .251
47 20 2 9.870 6| 2 15.92| 0.015| 760 .251
JAS) 10 8 0.6159 7 | 2.5 | 15.92| 0.015| 773 .309
50 10 4 2,467 4| 2.5 | 15.92] 0.015| 773 .309 .
51 10 2 9.870 | 4 | 2.5 | 15.92| 0.015| 773 .309
51 10 2 9.870 41 2.5 | 15.92] 0.015| 773 .09
54 40 A 2,467 1411 16.0 | 0.010| 575 443

~55 20 2 9.870 15 | 1 15.0 | 0.010] 575 <506
59 20 2 9.870 8| 1.5 | 16.0 | 0,010| 632 .278
59 20 2 9.870 8| 1.5 | 16.0 | 0.010| 632 .278
61 20 4 1.2.467 g | 1.5 | 16.0 | 0.010| 632 .278
31 20 A 2457 8] 1.5 | 16.0 | 0.010| 632 .278
63 40 L | 2.467 4] 1 16.0 | 0.010| 575 <443

. 64 L0 2 9.870 5|1 16.0 | 0.010| 575 .506

© 65 24 4 2.467 g1 10 0.010§ 572 .252
66 2/, 2 9.870 8|1 10 0.010| 572 «252
67 12 4 2467 L] 1.7 |10 0.010| 635 V254,

. 68 12 2 9.870 L1 1.5 110 0.010| 622 .249

Poly. : .

Specs

Thick :

;g:it 16 1.579 61{ 1.51] 10 0.020 | 2520 .831

Sheet 16 5 1 1.579 61 1.51 10 0.0120{ 2190 +723
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Table 3. Calculation of the Critical Compressive Strains '.1 ,\“
i [11] Iazlg . [J(B] ) 0[1'17.% /s | ¢ [l%] ) [16] 173
GALCIT Tt strlS,n)s . T 1.sh(s,n ay p
Spec.No.(iIx:z:tlo‘é) x fatr.t(s,n) (10)+(12) (ing?clo—é)
25 337 .0590 0.407 122 57.74 0.90{ 1
-1 26 337 .0590 0.407 122 57.74 . 0.90 | 1
27 337 0.102 0.519 122 105.80 0.95 | 1
28 723 0.065 . 0.359 4t 122 26.57 0.80 | 1
20 723 0.0508<€ 0.329° 244, 35.85 1 1
31 108 0I09% 5 | 0.277 9 247 5.12 1 1
1 408 0.0616 .":71 0.276 244 35.85 1 1
31 408 0.1465'°"%6} 0,432 244, 106.28 1 1
/ 32 408 0.0616 0.276 244, 35.85 1 1
35 942 0965 .369 489 - 20.48 1 2
36 942 —.0965 369 489 20.48 1 2
37 942 .0965 .369 489 20.48 1 2
38 Lo8 0616 0.276 244 35.85 1 1
38 iog o .0616 0.276 244 35.85 1 2
39 99 .0300 0.391 122 105.78 0.95| 1
39 P 0300 0.391 122 105.78 0.95[ 1
AR L8 .0836 0.480 183 57.74 0.875 1
i2 478 .0836 0.480 183 57.74 0,90 { 1
43 478 44 0.619 183 57.74 0.901 1 -
45 1117 .168 0.419 366 35.85 1 1
45 117 .168 0.419 366 35.85 1 2
L6 my .168 0.419 - 366 35.85 1 1
. 46 1117 .168 0.419 366 35.85 1 2
L7 1117 168 0.419 366 35.85 1 1
47 1117 .168 0.419 366 35.85 1 2
79 2010 . 206 0.515 733 20.48 1 2
50 2010 .206 0.515 733 20.48 1 2
51 | 2010 .206 0.515 733 20.48 1 1
o5 2010 .206 0.515 733 20.48 1 2
54, 10 .0673 9.510 123 174 1 1
55 706 %iogj 0.606 123 265.9 1 1
58 337 0. 0.399 246 106.3 1 1
58 337 0.121 0.399 246 106. 1 2
59 337 0.121 0.399 2.6 106.3 1 1 .
59 337 0.121 0.399 246 106.3 1 2
61 337 . 0.121 0.399 246 106.3 1 1
61 337 0:.121 0.399 246 106.3 1 2
63 10 .0673 0.510 123 174.0 1 1
6l 140 .100 0.606 123 - 265.9 1 1
" 65 140 L0348 0.287 128 73.80 1 1
. 68 140 L0348 0.287 128 73.80 1 1
. 67, 408 .0290 0.283 256 14.22 1 1
68 337 .0241 0.273 256 14422 1 1
Poly.Specs.
Thick :
sg;:t 728 .172 1.00 384 56.02 1 1
AN
Sheet 509 120 .843 *384 56.02 1 1

(.
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Table 3. Calcﬁlatim of the Critical Compressive Strains

Agg'r i‘[mg )1 gi‘(;.?te) (1 [:2:?:]!.4 (2 (m§22]21) Ez%]) r24l

G a3f2 sh(s,n 5 9 rin

Spec. o, | - 2= (m}xw-;) u (1::5) (115.4::10-7)
25 49.87 7.87 9.1 54 | .0519 | 86072 219
26 49.87 7.87 %6.1 62 | .0596 | 86072 219
‘27 94.90 10.88 133 65 .0880 | 49135 219
28 zo.g 3.91 Zzg - Tz.s 169986 %9
0 33. .59 . 55 .0348 | 5 9
31 %81 0,51 ;.s 58 | .00L35 'Jf‘%gs 215
il 33.26 2.59 63.2 62 .0392 | 49135 219
1 93.26 13.02 65 | 0.207 20016 219
sl pe | izlgt gler e 2

L] L] 9 L] 5

36 | 7. . 129 65 .ggz. 20015 219
37 17.84 2,64 129 65 .085 20016 219
38 33.26 2.59 63.2 65 0416 | 49135 219
38 34.51 1.3 32.7 65 0216 49135 219
39 95.0 10.78 132 65 .087 135 219

39 95.0 10. 132 &5 .087 49135 T 219
41 48.4 9.34 71 53 | 091 1 264,
42 49.8 794 145 62 .090 86071 264
43 49.8 7.94 145 65 .096 86071 264,
45 33.26 2.59 94.6 58 .055 49135 264
55 3,.51 1.3 49.0 58 . 49135 261,
L6 33.26 2.59 94.6 62 | .os8 49135 264,
46 34.51 1.3 49.0 62 .030 49135 264,
47 33.26 2.59 94.6 65 .062 49135 264,
L7 34,51 1.3 49.0 65 | .032 | 49135 264,
49 17.8 2.61, 15% 58 | 0.113 20016 21,
50 17.84 2.64 194 65 | 0.128 20016 264
51 15.76 4.72 346 65 | 0.228 20016 264
51 17.84 2.64 194 65 | 0.128 20016 264,
5/ 161.2 12.8 158 5, | .085 545 4010
55 210.8 25.1 i‘s 64 | .197 16 2010
58 93.3 13.0 320 58 | .186 200156 4010
58 100.2 6.1 150 58 .087 20016 4010
59 93.3 13.0 320 63 .202 20016 4010
59 100.2 6.1 150 63 .095 20016 10
61 93.3 13.0 320 55 .176 20016 0
61 100.2 6.1 150 55 .083 20016 3210
63 161.2 12.8* 1s8 55 .087 30445 3210
64, 2,0.8 25,1 308 641 .197 20016 3210
65 68.20 5.6 71.7 59 | 042 35445 219
66 68.20 5. 71.7 65 047 35445 219
67 11.90 2.32 59.4 59 .035 35445 219

- 68 11.90 2.32 59,4 65 039 35445 219

Poly.Specs.

Thick

Sheet 49.75 6.27 240 - 55 | 0.132 24 54

e 530 9

Sheet 49.75 6.27 240 58 24530 802

0.140
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Table 3. Calculation of the Critical Compressive Strains
£1}. [25 26] 27 2 [31
GALCIT Llfr ; S (LSx(%B) (22)-222) (27)/\22) ), (25?::129) :
Spec.No. | (in o ) (in.<) (ml) =(mel) (in.<)
25 892 .252 .200 224, 15.0 3.88 0134
26 447 1.005 0.945 2120 46.0 6.78 .0206
27 128 5.13 5.04 39400 199 1.1 0253
28 2350% .0554 -— -_ 4 2% -0047%#
0 510 0.203 0.158 329 18.1 Lol .00923
31 88 .683 .679 769 27.8 5.28 0246
31 255 .681 642 2520 50,2 7.10 .0128
31 104 1.066 " .859 8250 90.0 9.54 00944
32 127 2,73 2.69 21200 12.1 .0186
35 208 .229 .154 740 27.2 5.22 .00566
35 208 910 826 7930 89.1 9.5 .00927
37 51.9" 3464 3.55 68400 262 16.2 .0136
38 63.6 10.9 10.9 171000 414 20.3 L0263 -
38 63.6 10.9 10.9 171000 414 20.3 .0263
39 63.6 15.4 15.3 2,000 490 22.2 .0312
E3) 63.6 15.2 15.3 22,000 450 22.2 .0312
A - 1075 .295 .20, 190 13.8 3.72 L0148
42 537 1.18 1,09 23638 45.0 8.71 L0442
L3 269 6.10 6.00 22 149 12,2 .0400
L5 615 .258 .203 330 18,5 4.30 L0114
%5 615 .258 .230 374 19.3 40 40 L0119
46 08 1.03 0.97 3150 56,1 7.48 .0178
46 308 1.03 1.00 3250 57.0 7.55 ,0182
47 154 4,14 4,08 26500 163 12,8 .0251
N 154 bell 4.13 26800 164 12.8 0253
79 250 0.318 0.205 815 28.6 £.35 L0071
50 125 1.27 1.1 9100 95.5 9.78 .0120
5L 62,5 5.09 4.86 77800 279 16.7 0175
51 62.5 5,09 4.96 79300 282 16.8 o177
.54, 2850 1.26 1.17 410 20.3 4,.50 .0578
55 S 9385 5.98 “5.78 6190 . . 78.6 8.86 7 o
58 1870 .985 799 426 20.6 4455 0385
58 1870 .G85 .898 480 22.0 4.70 .0410
59 935 3.94 3.74 4000 63.3 7.96 0592
59 935 3. 3.84 4110 64.0 8.00 .0598
61 1560 §g§ .809 539 23.2 5.81 .038
61 1500 985 .902 601 24.5 4.95 0367
63. 2280 1.26 1.17 513 22.6 4.75 .0515
6. 749 5.98 5.78 7730 87.8 9.36 0656
65 743 <709 667 900 20.0 5..8 0223
gg ';t'g 2.698 0. 223 893 29.2 5.46 0222
‘ 70 2, 7180 8. 9.19 .0
Poly.Specs. 3L
Thick .
_Tsmt 2800 1.58 1.45 517 22.7 4.76 .0635
Sheet 2360 1.33 1.19 504 22,5 4,75 .0530

#See remarks on calculations.

1



Table 3. Calculation of the Critical Compressive Strains
{1 - [32] [33] [34] [35] [36] (371
GALCIT (26)/629) | . £(med) | (33)x(20) (31)4(32)+(34) | 2%, | Ae2nh
§EC-N°- (Ev ) (in- ) (E- ) (&)____(i_nAL__
25 .0168 15.7 0151 .0453 1.76 | .0500
26 .0219 18.3 .0176 0601 1.76 { .0500
27 .0258 19.5 .0259 .0770 1.76 | .0500
28 .0138 156 0116 .0301 2.3 0554
30 .0112 16.0 .0101 .0305 2.3 .0554
31 L0215 17.2 L00I31 .0505 2.0 052,
31 .0136 18.4 .0116 .0380 2.0 .0524,
3l 01172 19.1 .0608 .0819 2.0 0524,
32 .0187 19.4 .0123 0496 2.0 .0524
35 0084 17.3 .0224, .0365 3.3 065,
35 .01022 15.0 <025 L0440 3.3 L0854,
37 .0140 19.6 .0252 .0528 3.3 L0654
38 L0264 19.6 0124 v 0651 2.0 .0524
38 .026/ 19.6 .0064 0591 2.0 .0524
39 031, 19.6 .0258 .0884 1.0 0424
9 <0314 19.6 L0258 0884 1.0 L0424
11 .0214, 15.3 .0262 0624, 1.76 | .0588
42 0262 18.2 0264 .0768 1.76 | .0%588
43 .0410 19.4 .0282 0.1092 1,76 | .0588
L5 .0140 16.2 .0153 0407 2.3 .0670
%5 LOL3, 15.3 .0080 .0333 2.3 .0670
L6 .0182 18.6 0176 .0536 2.3 L0670
L6 .0180 18.6 .0091 0453 2.3 .0670
47 0254, 19.4 .0183 .0688 2.3 .0670
L7 0252 19.4 0095 0600 2.3 .0670
%9 LOLLL 17.5 L0340 L0522 3.75 | .0880
50 0133 19.1 +0370 ,0623 3.75 | .0886
51 .0182 19.6 0677 .1034 3,75 | .0886
5551 “o6o JiZ'g 0%6n R 3P| o
55 L0761 189 [ .0582 0.2078 - 1.2 OLLL, |
58 .0478 6.7 .0535 0.1398 2.0 0524
58 OLL6 16.8 ,0250 0.1306 2.0 .0524,
59 .0623 18.7 .0599 0.181% - 2.0 0524
59 L0615, 18,7 ,0281 0.1494 2.0 0524
61 L0235 17.6 L0827, 0.1317 2.0 052,
61 0403 17.0 .0255 0.1025 2.0 | 0524
63 .0558 17.0 .0279 0.1352 1.2 QL4
62 .0681 19.0 .0585 ,0.1922 1.2 OLdd,
65 .0236 17.6 .0126 .0585 1.2 NeTANA
66 .0327 19.0 L0136 .0784 1.2 20444
67 .0233 17.6 .0105 .0560 2.0 .0524
68 0314 19.0 .0113 0746 1.76 | .0500
Poly.Specs.
Thick
Sheet 0694 16.9 0405 0.1734 2.0 10,181
Thin
.0590 16.9 L0405 0.1525 2.0 | 0.165

Sheet
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51

b
Table 3. Calculation of the Critical Compressive Strains
o | | e | (€L o By | ]
8,0 X € € . m .
Spec.No. (;n.g) (3737C39)" o P
25 548.9 27.4 .00165 .001270 0.97 6
26 548.9 27.4 .00219 .00208 1.05 8
27 548.9 27.4 .00281 .00288 0.98
28 439.5 24.4 00124, .00130 6.95 3
|0 332.1 18.4 . .00166 .00140 1.18 5
31 95,7, 0.7 .002L5 .00190 9
31 332.1 17.5 .00217 .00190 1.1 9
3 436.8 22.9 .00356 00150 9
32 332.1 17.5 .00284, .00256 1.11 v 16
35 380.8 24.9 00147 .00120 1,22 6
36 380.8 2.9 00177 00164 1.08 7
37 380.8 24.9 .00212 .00200 1.06 17
38 332.1 17.5 .00372 .0Q283 1.7
38 332.1 17.5 .00338 .00283 1.19
39 657.9 27.9 .00315 .00326 0.97
39 657.3 27.9 00315 00326 0.97 ,
VAR 5.8.9 32.3 00193 «00182 1.06 8
42 548.9 32.3 .00238 .00215 1.11 12
43 657.9 38.6 .00282 .00280 1.01 17
45 332.1 22.3 .00183 .00L46 1.25 8
45 332.1 22.3 00145 L0015 1.00
L6 332.1 22.3 .00240 .00167 1.43 12
L6 332.1 22.3 .00203 .00167 1.2 12
47 332.1 22.3 .00308 .00249 1.2 17
LT 332.1 22.3 .00270 .00249 1.08 17
A 380.8 33.8 00157 .00128 1.20 ~ 8
50 380.8 33.8 .00184 .00150 1.22 12
51 380.8 33.8 .00306 .00250 1,22 16
51 380,8 33.8 .00218 .00250 0.83 16
57 762.8 33.9 .00430 .003732 1.15 13
55 847.5 357.6 - .00551 .004775 1,35
58 436.8 - 22.9 00609 .00435 - 1.40 11
59 436.8 22.9 .00791 .006154 - | 1.29 16
59 436.8 22.9 00651 006154 1.06 16
6Y 23%.8 35,9 .00574 .004927 1.16 7
61 436.8 22,9 00448 004927 0.91 7
63 .| 762.8 33.8 .00400 004045 0.99 9
64, 847.5 37.6 .00510 .00510 1.00 VA
65 438.2 19.4 .00301 .00315 0.96
66 438.2 19.4 00404 00420 0.96
67 386.9 20.3 .00276 .00295 0.94
68 286.9 _19.3 .00387 .00375 1.03
Poly.Specs.
Thick
%hﬂ;:t 332.9 58.5 .00295 002568 1.15
Shest 332.9 55.0 «00277 .00224, 1.24 4




COMPRESSION SIDE

. FIG. ld. DISTORTIONS OF A RING AT
| BUCHKLING.

FIG. Ib. COMPARISON OF DEFLECTED

PATTERNS OF A RING.,

'm === FORMER ASSUMED SHAPE,

REVISED SHAPE. '
FOR h=3
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FIG. 3. FURTHER PROPOSED PATTERNS.
—————USING 3 FOURIER COEFFICIENTS. E

, ING 5 FOURIER COEFFICIENTS, ¢
FIG. 2 DEFORMATION OF INFINITESIMAL ARC ELEMENT. FOR N=3
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FIG. 4. SHE‘AR DISTORTION OF PANEL. FIG.5. EFFECTIVE SHEAR RIGIDITY VARIATION.
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FIG. 7. FUNCTION OF NUMBER OF RING FIELDS INVOLVED IN FAILURE,



